ENS - Ecole Normale Supérieure
Back to top

Publications

Acte de conférence non expertisé  
Acte de conférence non expertisé  

Dubourg, E., Mogoutov, A. & Baumard, N. (2023). Is Cinema Becoming Less and Less Innovative With Time? Using neural network text embedding model to measure cultural innovation. , Vol. 1613: In CEUR Workshop Proceedings (CEUR-WS.org), Paris, France, 0073.

Acte de conférence non expertisé  

Millet, J., Caucheteux, C. , Boubenec, Y., Gramfort, A., Dunbar, E., Pallier, C. & King, J. (2022). Toward a realistic model of speech processing in the brain with self-supervised learning. , Vol. 35: In 36th Conference on Neural Information Processing Systems, 33428-33443.

Acte de conférence non expertisé  

Caucheteux, C. , Gramfort, A. & King, J. (2021). Disentangling syntax and semantics in the brain with deep networks. , Vol. 139: In International Conference on Machine Learning, PMLR, 1336-1348.

Chapitre d'ouvrage  

Pressnitzer, D., Agus, T., Kang, H. , Graves, J. & Andrillon, T. (2021). Apprentissage de motifs sonores. In S. Samson, B. Tillmann, C. Jourdan, V. Brun (Eds.), Audition et Cognition Montpellier: Sauramps Medical

Acte de conférence non expertisé  
Chapitre d'ouvrage  
Acte de conférence non expertisé  

Thoret, E., Andrillon, T., Gauriau, C., Léger, D. & Pressnitzer, D. (2020). Sleep deprivation impacts speech spectro-temporal modulations. In e-FA2020 (e- Forum Acusticum 2020 ), Lyon, France.

Chapitre d'ouvrage  

Shamma, S. (2020). Temporal Coherence Principle in Scene Analysis. The Senses: A Comprehensive Reference (Second Edition) (Vol. 2, pp. 777-790).Elsevier. doi:10.1016/B978-0-12-809324-5.24252-1

Acte de conférence non expertisé  

Zuk, N. , Di Liberto, G. & Lalor, E. (2019). Linear-nonlinear Bernoulli modeling for quantifying temporal coding of phonemes in brain responses to continuous speech. In 2019 Conference on Cognitive Computational Neuroscience, Berlin, Germany.

Acte de conférence non expertisé  

Erdmann, A. , Joseph Wrisley, D., Allen, B. , Brown, C. , Cohen-Bodenes, S., Elsner, M. , Feng, Y. , D Joseph, B. , Joyeux-Prunel, B. & de Marneffe, M. (2019). Practical, Efficient, and Customizable Active Learning for Named Entity Recognition in the Digital Humanities. In Proceedings of the 2019 Conference of the North, 2223-2234. doi:10.18653/v1/N19-1231

Chapitre d'ouvrage  

Mamassian, P., Landy, M., Maloney, L., Rao, R., Olshausen, B. & Lewicki, M. (2002). Bayesian modelling of visual perception. In R. Rao, B. Olshausen & M. Lewicki (Eds.), Probabilistic Models of the Brain: Perception and Neural Function (pp. 13-36). Cambridge, MA: MIT Press