Modulations temporelles

Les sons complexes, y compris la parole, peuvent être représentés comme une somme de sinusoïdes modulées en amplitude et en fréquence (AM et FM). Pour la plupart des sons de communication, les cadences d’AM et de FM varient généralement entre 1 et environ 100-500 Hz (les cadences les plus saillantes étant comprises entre environ 1 et 20 Hz). Chaque sinusoïde AM-FM engendre un patron complexe d '«excitation sensorielle» à la sortie des filtres cochléaires.

Psychophysique

La méthode utilisée au sein de notre laboratoire et notre département de sciences cognitives de l'Ecole normale supérieure est une méthode scientifique. Il s'agit de la méthode hypothético-déductive utilisée en sciences expérimentales (sciences du vivant, physique, chimie, géosciences, etc.).

Crossmodal interactions without visual awareness

Binocular rivalry is a form of perceptual bistability in which each monocular image is temporarily removed from visual awareness in favour of the other. I will  present psychophysical evidence investigating crossmodal interactions between touch, audition and vision during binocular rivalry. We show that haptic signals interfere with the dynamics of binocular rivalry outside of visual awareness, that is, by rescuing the congruent visual stimulus from binocular rivalry suppression.

A brief introduction to deep learning and its application to multichannel speech enhancement

Over the past decade deep learning has become the state-of-the-art in many applications including several tasks of speech and audio processing. It has recently been applied to multichannel speech enhancement, outperforming most of the classical approaches. In this presentation, I will present a brief history of neural and a short overview of some deep learning architectures that are currently used. I will then describe the problem of multichannel speech enhancement and a solution to this problem: the multichannel Wiener filters.

Mental Illness as impaired Bayesian Inference

A growing idea in computational neuroscience is that the brain can be
viewed as a sort of "guessing machine", constantly trying to guess
what is present in the external world, what is the best action to take
and automatically trying to predict the next moment.
The way the brain would do that is by maintaining and updating
internal probabilistic models of the world that serve to interpret the
environment and guide our actions, and using calculations akin to the
well known statistical methods of "Bayesian inference".